Earth Observing Missions Applications Workshop

Recommendations

February 1-3, 2010 Colorado Springs, CO

Key Recommendations

1. Strategic

- a) Accelerate use of NASA data for applications and societal benefit
- b) Develop and maximize government, private, and academic partnerships
- c) Organize around grand challenges in areas to be determined
- d) Leverage Existing activities

2. Organizational

- a) Integrate applications users into mission teams as early as possible
- b) Conduct periodic user meetings and encourage more frequent interactions of subgroups and agency partners
- c) Train the next generation

3. Data

- a) Ensure data continuity
- b) Improve infrastructure to provide access to high level data products
- c) Improve infrastructure to provide rapid access to data

1a. Accelerate use of NASA data for applications and societal benefit

- Assess user needs by mission and application
- Identify common user needs by mission
 - ➤ A data product or implementation mode may serve multiple user groups
- Identify common user needs across the missions
 - Infrastructure may address multiple user group needs
 - May result in improved data continuity, availability, or quantity
- Encourage active participation and investments by the end users
 - ➤ In kind
 - > Financial

1b. Develop and maximize government, private, and academic partnerships

Partnerships

Government

- ❖ Policy, science, engineering
- Planning and administrative/service linkages
- Link all scales from municipalities/counties to states to federal

Private

- Engineering
- Value-added service business
- Innovation/start up companies

Academic

- Science, engineering
- Urban planning, public administration
- Student and early career source

Link users at all scales in order to accelerate use of NASA data

- > Active interagency cooperation
- > Flow down to end user organizations and individuals
- Working partnerships provide the most promise for long-term transitioning of advanced approaches to end users
 - > Create in-residence, remote assignment, and exchange programs as a means of transferring knowledge and fostering partnerships
- Formalize partnerships with MOUs and MOAs
- Incentivize joint partnerships

1b. Organize around grand challenges in areas to be determined

Addressing grand challenges focuses efforts

- Brings together multidisciplinary users to address themes of national importance
- Integrates the mission and user communities
- Enforces consistent integrated higher level data products

1c. Leverage Existing Activities

- Don't reinvent existing activities
 - Work within existing partnerships if possible
- Inventory and participate in existing activities and partnerships
 - Many of these already exist
 - ➤ Not described in one place for NASA
- Identify all levels of activities
 - > International activities
 - > Federal committees/activities/partnerships/plans
 - ➤ State organizations
 - ➤ Municipalities

Create a wiki for inventorying these activities

2a. Integrate applications users into mission teams as early as possible

- Ensure applications mission representation
 - > Participate from pre-formulation through operations
- Representative(s) would draw on broader user community
 - Member's time supported by agency/user organization
 - Meet as a group to understand how mission would meet the user needs
 - Semi-yearly to bi-yearly meetings in conjunction with science and mission team

2b. Conduct user meetings and encourage more frequent interactions of subgroups and agency partners

- Continue dialogue through an interagency working group
 - Convene as soon as practical
- Convene periodic broad user meetings
- Convene meetings coincident with other standing meetings
- Encourage working groups and mission teams

2c. Train the Next Generation

- ❖ Incentivize early career participation
 - > Fellowships
 - > Grants
- Develop student programs
 - ➤ Shared graduate students
 - > Student fellowships
 - > Student internships

3a. Ensure data continuity

- ❖ Data continuity was the biggest concern expressed by the end users
- Adopting new approaches requires a substantial investment by the end user organization
- Our nation must adopt a new paradigm to ensure data continuity
 - > As an agency NASA should
 - » Develop advanced concepts, technologies, and missions to
 - Understand natural processes that impact our home planet
 - Provide a synoptic view on global, regional, and local scales using spaceborne and airborne assets
 - » Provide information as available when and where it is needed
 - Other agencies must deploy operational missions

3b. Improve infrastructure to provide access to applications-tailored data products

- ❖ NASA data is difficult to impractical to use for non-team members
- Users need tools to solve their problems
 - Data products on demand
 - ➤ Data quality information
 - ➤ Data discovery, mining, fusion, and registration
 - Visualization tools

"It's not what I need"

"I can't find it"

"It's too hard to use"

3b. Improve infrastructure to provide access to applications-tailored data products (continued)

- c) Data quality information
 - > Metadata standards to
 - » Bridge the gap between data and scientifically useful info
- b) Data discovery, mining, fusion, and registration to make the right users aware of the right data sources

- ➤ Services to allow users to create the products they need (transformations like subsets, accurate geo-referencing, fusion of very diverse sensor data, etc) automatically track provenance
- Spatiotemporal information services for compositing models
- > Automated notification of availability and data delivery
- visualization tools easy to incorporate products into decision support systems or field displays

3c. Improve infrastructure to provide rapid access to data

- a) Data latency the demand for 'good-enough' data for emergency response
 - ➤ Quick look products

"It's too late"

- > Define
 - » Latency thresholds <30min, <3hrs, <48hrs</p>
 - » Corresponding data delivery system
- ➤ Determine options and trades between
 - » Onboard processing
 - » Direct broadcast
 - » Web-based services for routine products
 - » Regional processing services for community-specific products

3c. Improve infrastructure to provide rapid access to data (continued)

- b) Data products on demand
 - Automated sensor tasking and product generation workflows
 - > Needed work
 - » Increase temporal resolution
 - » Acquire complementary sensor measurements
 - Space and in situ
 - Reduce response time
 - Automatically respond to detected events
 - » Develop direct downlink capabilities

Challenges

- Existing bureaucracies
- ❖ Disparate funding at local, state, and federal agencies
- Funding cycles differ
 - ➤ And getting in lock-step takes years
- Discontinuous datasets
- Education and training

As an Agency NASA Should

- Develop advanced concepts, technologies, and missions to
 - Understand natural processes that impact our home planet
 - Provide a synoptic view on global, regional, and local scales using spaceborne and airborne assets
- Provide information as available when and where it is needed
- Support engineering disciplines as end users
 - NASA products do not only serve the science communities
 - Engineering is a key discipline for a robust nation and needs to be included
 - Many of the users come from engineering rather than science disciplines

Partner Agencies Should

- ❖ Invest in aspects of the mission that specifically benefit that agency
- Support participation of staff in mission applications working groups

Addressing the Challenges: Maximizing Investments

- Incentivize partnerships
 - > Joint solicitations
 - Cost sharing
 - » In kind salaries/time
 - » Financial transfer of technology
- Incorporation of early adaptors
 - Bring in key liaisons for communities to bridge organizational barriers
 - > Inertia is difficult to overcome
 - » Resistance to new technologies and methodologies
- Train our next generation
 - ➤ Involve early career scientists and engineers
 - > Develop internships, fellowships, shared-student programs
 - » Potential to be hired into user communities

Metrics: Assessing Effectiveness

- Evaluate end user adoption
 - > Quantify acquisition of instruments or assets
 - Assess whether adopted on a long-term basis or tried and discarded